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Abstract—The effectiveness of using magnetized ferrite toroids in
circularly cylindrical guides operating in the TIEo~ mode as elements

of a digital phase shifter is investigated. The phase of such a device

is controlled by reversing the magnetization of individual ferrite

toroids. An analysis of the circularly cylindrical guide containing, co-

axially, a ferrite tube is presented for circularly symmetric modes.

Some results of computations to determine the optimum tube thick-
ness, mean radius, and effect of frequency and {changes in the funda-
mental constants of the material are included.

INTRODtTCTION

T

O CONSERVE power and increase the accuracy

to which a prescribed phase shift may be set,

digital rather than the usual continuously variable

type phase shifters have been suggested for use in

phased lmicrowave antenna arrays. Various schemes

have been suggested including the use of magnetically

saturated toroids in rectangular waveguides in which

the phase can be shifted digitally by the reversal of the

magnetization in the toroid through the application of

a current pulse. RI any of these arrangements suffer

from the disadvantage that not all of the ferrite is effec-

tive in producing differential phase shift since only a

portion is in the region of circular polarization. Ferrite

toroids in round waveguides utilizing the circular TE

mode seem to be the natural microwave structure for

such nonreciprocal phase shifters since all of the ferrite

may then be effective.1

A theoretical investigation is presented here of the

mode structure and the differential phase shift per unit

length for the circular cylindrical guide containing a

coaxial ferrite tube. While it is recognized that in prac-

tice the ferrite toroid will be of finite length, and the
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author while he was at Lincoln Labs., see: Solid State Research,
Lincoln Labs., Mass. Inst. of Tech., Cambridge, no. 1, Section IV G.
1963, pp 38.
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ferrite will not necessarily be completely magnetically

saturated, it is expected that this study will yield useful

design data such as the differential phase shift., optimum

toroid placement and dimensions.

Various ways of switching the ferrite cores are avail-

able since Ed is the only component of the electric f~eld

present in the guide. Assuming no undesirable mode

conversion present upon introducing the ferrite toroids

into the guide it is possible to switch the cores by,, for

example, either running a thin central conductor down

the guide axis and linking to this wires entering the

guide radially and insulated from the guide wall, or, by

introducing loops in planes normal to the angular co-

ordinate O. Suitable current pulses applied to these

loops will then allow the saturation field to be reversed

in the ferrite cores.

THEORY

We will first consider wave propagation in a circular

cylindrical guide completely filled with ferrite nlag-

netized in the circumferential or d-direction. The com-

pletely filled guide is treated only to study the charact-

er of the eigenfunctions and their eigenvalues and it

is not expected (due to the difficulty of synthesizing a

uniform circumferential magnetizing field) that such an

arrangement will have practical utility. The analysis

mill then be extended to more complex structures such

as tubes or rods of ferrite placed coaxially ~rithin ci rcu-

lar cylindrical guides.

A ferrite magnetized in the direction of the @coordi-

nate may be characterized by the permeability tensor

“=”or:: :1:1 ‘1)

where

yMyH Uyi$f

x = (YH), _ J K = – (T~)? .- ~,~
(2)

and y is the gyromagnetic ratio, M the magnetization,

and H the magnetizing field. We will restrict our atten-

tion to those TE modes that exhibit rotational sym-

metry. Assuming time and axial variations of the ~form

e]” L and e–)fl”, respectively, we find that the only non-
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vanishing component of the electric field Ed must satisfy

the differential equation

d2Ed ( )~++d:+ k’+<–+ E6=0 (3)
r

where Y is the radial coordinate and

a’ = ~K/(1 + x)

hz = ~~p,EA’ – ~z

A’ = [(1 + X)’ – K2]/(1 + X). (4)

The components of the magnetic field are given by

~=_3(l +x)
T E+ + L ; ; (rE+)

702 Y02

(1+X) 1 d

‘r & ‘“E”) ‘5)
H,=–~E4+j ——— —

-Y02 ~o?

where

YLIZ = 0J2&LO[(l + X)2 — K2] = CJJ2MOA. (6)

lVe seek solutions to (3) subject to the boundary condi-

tion

E4 = 0, ~=b (7)

where b is the inner radius of the guide.

Equation (3) is recognized as Tricomi’s form of the

Confluent Hypergeometric equation.z We may thus con-

struct solutions using Humbert’s or Whittaker’s nota-

tion or other forms of the Confluent Hypergeometric

functions.3 Since the tabulation of these functions and

their eigenvalues is not complete it was decided to con-

struct solutions that relate directly to Bessel and Neu-

mann functions. This was prompted by the fact that as

a’ goes to zero (3) reduces to Bessel’s equation. Further,

as a’ is proportional to the product &we have that the

eigenvalues must reduce to those of the Bessel functions,

both at cutoff f? = O, and as K goes to O, i.e., as the ferrite

material is allowed to become isotropic. Thus construct-

ing solutions Bl(a; kr) and Hl(a; kr) not only facilitated

the computational

interpretation.

Thus

Bl(o; x) =

where x = kr.

work but also aided in physical

Jl(x), III(O; x) = f!l(x) (8)

These functions are given by

cc

BI(a; .x) = ~ a,.tp+l
~=o

aPfz = – (aap+~ + aJ/(P + 2)(4 + 4)

ao = 1/2, al=— cY/3 (9)

2 Butewan Compendia, vol 1, New York: McGraw-Hill, 1953,
p. 251.

3 Morse, P. M. and Feshbach, H., Metkods of Theoretical Physics,
vol 1, New York: McGraw-Hill, 1953, ch 5, pp 604–619.
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Fig. 1. Bl(a; x) as a function of x and Iabelled with the parameter a.

L.-**1 -_

-,0
,,

)4

-16

\/

,.,, .”.,, 0. ,.,.,5,. . ,

-, a

B:[”, x)*O

Fig. 2. The deri~-ative of Bl(a; y) as a function of
.~ and Iabelled with the parameter a,

and

HI(CI;~)=W+IIWM+ ,,+2).
a

– — + 5 dn+2x”+1
1+CY2 ?2=0 }

d,,+2 = – (ad.+I + o?J/n(~z + 2) – [l/n+ l/(~z + 2)]an

do = – 1/(1 + C22), dl = – a/(1 + 0?),

dz = (-y – In 2 – 1/2)/2 (10)

where

a = a!/k.

Figures 1 through 4 show the functions lll(a; ~),

lll(a; x) and their derivatives as a function of x with a
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Fig. 3. Hl(a; x) as a function of x and labelled with the parameter a.
Fig. 5. The eigenvalues of BI(a; x) as a function of a.
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Fig. 4. The derivative of H,(a; x) as a function of x
and label led with the pararnet er a.

as a parameter (—2 <a< 10; O<x< 10). The solution to

(3) may thus be written in the form

E+ = ABI(cz; z) + BHI(Ix; z) (11)

where A and B are constants. However, E+ must be

bounded at the origin thus B =0. The boundary condi-

tions (7) then gives

Bl(a; *O) = o (12)

where XO= kb. The eigenvalues of (12) will be denoted

by Pi,*,(a) where the Pl,~(0) correspond to the eigen-

values of .71(x) = O. Figure 5 shows the functional de-

pendence of the first three eigenvalues P1,l(cL), P,,2 (a)

and pl,s(a) on a.

To calculate the propagation constant at given u and

given ferrite parameters we use relations (4), eliminate

/3 to obtain

c#poeb2A1 :L’l?(o)
xll~(a) = . (13)

~ + [o!(1 + X)/K]2 = ~+ CI’(1 + X)’/Kz

I

Superposition of the curves generated by ( 13) on the

family of curves @l,.,(a), give, for any one value of m,

the two sets of values (a, x) that simultaneously satisfy

the required conditions (12) and (13). Then, using (4),

we may calculate the propagation constants, i.e.,

@b = ‘Lz ax. (1-!)
K

It is clear that the curves generated by (13) are sym-

metric about a = O and the curves pl,~(a) are not. Thus

the propagation constants ~+ and ~– calculated from

their points of intersection differ. Ji’e observe that as

u is decreased the guide is ‘(cutoff” in one direction be-

fore the other and the ordinate of (13) approaches

PI,~t(0). Also, since the slope of pl,~(a) at a ❑ = O is nega-

tive and the slope of (13) is zero at a = O—we see that

just prior to ‘(cutoff” for both directions of propagation

there are two intersections of (13) with I%,m(a) for a

positive and, therefore, two distinct modes for the same

direction of propagation become possible. These then

coalesce as rJJis further reduced and complete cutclff is

finally reached. The directions of propagation are not

identified as forward and re~-erse since, for a posi ~ive,

Db maybe positive or negative depending on the sign of

(1 +x)/K, i.e.,

1/z ~ (1 + x)/K $ 0. (1$
@ ? [(7H)2 + YM7R]

We can now treat the case of a circunnferentially

magnetized ferrite tube mounted coaxi ally within a

circular cylindrical guide. (We again restrict oursl.’lves

to considering the rotationally symmetric TE modes. )

Let the inner and outer radii of the ferrite tube be a and

b, respectively, and let d be the guide radius. :\ cross-

section of the guide will then show three regicms, nanlely,

an inner region filled by some isotropic dielectric, the

middle region containing the ferrite, and an (outer

region again containing an isotropic dielectric, I hese
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regions and related quantities will be identified using

the Roman numerals I, II and 111 for the inner, middle,

and outer regions.

We can now write the following expressions for the

electric field components

E41 = EI~I(ko?’) e–j@I’J

E$II = [BI(a; kr) + C171(a; kr)]e–~(fl’r:)

EdIII = ~111 [~I(k07) + ~I~rl(kor) ]e–j@lzJ (16)

where

koz = CO’LLW– 62 (17)

and where EI, EII, EII1, C, and D are constants. The di-

electric constant of the regions not containing ferrite

was taken to be that of the ferrite. This may, in fact,

be desirable in practice besides simplifying the calcula-

tions somewhat.

Application of the boundary conditions and eliminat-

ing the constants yields the transcendental equation

B1(CI; w) Fl(a; TN) – F2(a; 72X)

~l(a; W) “@; W) – ~2(CI; Tz.~)

Bl(a; T2?) Fl(a; w)
——

Hl(a! ; Tlz) F3(CI ; 7’2X)

where

– F2(a; T2.E)
– (18)

– F4(a; r~x)

F,(cI; m) = [1 – cum+ n@’(a; rx)/B,(a; TX)]/A’

~Z(CY; T.t) = T’y~o(Ty)/~l(T)

F3(CY; TX) = [1 – CIT.X + T.d7:(ci; TX)/Ill(CY; TX)j/A’

F,(cE; m) = 7yZo(Ty)/Zl(TY)

and

zo(Ty) = ~O(Ty)fITI(y) – ~,(y),~o(Ty)

zI(Ty) = yI(Ty) l~~(y) – ~I(y) ,~I(7y)

where T may take on the subscripts 1 and 2, and

rl = a/d, 72 = b/d

and

x = kd, y = k,d

also

d
Ill’(a; y) = ~ Bl(a; y), etc.

We have also

y2 = .t2[K2 + [a(l + x)] ’(i – A’)}/K2A’. (19)

Solutions of the transcendental equation will yield the

eigenvalues as a function of a—the intersection of these

curves with (19) will then, as before, allow the computat-

ion of the propagation constants and the differential

phase shift of this structure.

As a sample, and because these results were used in

calculations to be presented, the form that the field

components take for the ferrite tube in contact with

the guide wall is given.

For O<r<a we have

E41 = J,(yr/b)/Jl(Ty)

I – Jo(yr/b)/Jl(~y)– japobHZ – y

– jw,uobH,I = jax(l+ X)~l(yr/b)/Kyl(~y) (20)

and fora<r<b=d

EbII = F(CY; xr/b)

B,(cz; x~/b)H,(ci; x) – l?,(ci; x) H,(cz; z~/b)
——

Bl(a; m) Hl(a; .t) – i31(a; .t)Hl(a; Tx)

— jwpobH,rI

= f [b/r – om]F(a; xr/b) + .xF’(a; :w-/b) } /A’

— ~pobH,II

= [ [aw(l + X)/K – Kb/(1 + x) Y]F(ci; *r/b)

+ zK/(1 +x) .F’(a; .w/b)}/A’,

where the primes indicate differentiation

RESCJLTS AND DISCUSSION

(21)

w.r. t. xrjb.

As was to be expected for the case of the completely

filled guide the curves (Fig. 5) displaying the behavior

of the eigenvalues as a function of a are not symmetric

about the ordinate since the magnetic intensities in the

regions where circular polarization occurs differ, being

somewhat stronger nearer the center of the guide. There-

fore, even for the completely filled guide a differential

phase shift is obtained. This is in contrast to the case

of the completely filled rectangular guide.

Figures 6 and 7 show the results of calculations per-

formed on the transcendental equation (18). That is,

they show the behavior of the eigenvalues as a function

of a for the two limit cases, the ferrite tube collapsed

into a central rod and the tube in contact with the guide

wall. These calculations were made taking the values

x = O and K = .2, i.e., the magnetizing field H was taken

to be zero and yll{/u was given a representative value

of one fifth. The lowest order eigenvalue was calculated

for various values of T where r = a/d—thus r indicates

the fraction of the guide cross-section filled with ferrite.

In the limit as T approaches zero or unity these curves

approach those for the guide filled completely by an

isotropic dielectric or the ferrite. The dielectric constant

for both the ferrite and the dielectric regions was taken

to be nine.

One would expect that in the partially filled guide the

differential phase shift would increase over that of the

completely filled guide as, in this case, only one region

where circular polarization occurs is contained within

the ferrite region. Further, one expects that as ~ in-

creases the differentially phase shift increases until ~

is such that about half the guide section is filled where-
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Fig. 6. The eigenvalues as a function of a for the circular cylindrical
guide containing a circumferentially magnetized ferrite rod.
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Fig. 7. The eigenvalues as a function of a for the circular cylindrical
guide containing a circumfrentially magnetized ferrite tube in
contact with the guide wall.

after it would decrease until it matches the value for

the completely filled guide. Thus, one expects the slope

of the eigenvalue curves to be the largest (negatively)

when ~ is about one half. This is indeed true for CYsmall

but as a increases negatively this no longer holds and

the curves take a downturn such that in this range the

differential phase shift is less than it would be for the

completely filled guide. When we have a ferrite tube in

contact with the guide wall this effect is even more pro-

nounced (Fig. 7) and we see that for even small a the

slopes of the eigenvalue curves are equal to or less than

that for the completely filled guide. Of course, for the

latter case where the guide contains 1ittle ferrite (r~l)

we expect the eigenvalues curves to become almost synl-

metric about the ordinate since the differential phase

shift will become vanishingly small.

An explanation that would account for the downturn

in the eigenvalue curve for a large and negative is that

the field must be expelled from the ferrite in this region.

To determine if in fact this occurs the components of

the electric and magnetic field were computed for this

case using (20) and (21) for ~=0.2 and x(1(O) =6, 20, 30

and 40 in (13). These values of XO(0) inserted into (13)

assurecf that the intersection points of (13) with the

eigenvalue curve for I- = 0.2 fell at suitab Ie points, that

is, before, on, and after the downturn. The results of

these calculations, presented in Fig. 8, clearly show that

the fields are expelled as a increases negati vely—umtil

at xO(0) equal to about 40 the greater part: of the energy

is transported for this direction of propagation in the

isotropic region. Thus, for this case the magnetic fields

are relatively weak throughout the region of circular

polarization lying within the ferrite and consequently

the anisotropic character of the medium has a smaller

effect on the propagation constant for this direction of

propagation.

The region of a large and negative holcls, ‘in fact, but

modest interest since operation in this region would

yield decreasing values of differential phase shift. Thus

the character of the eigenvalue curves for a above the

downturn is of primary interest.

Figure 9 presents a typical curve of the differential

phase shift as a function of ~. Again, the explanation

of the unexpected result that the maximum differential

phase shift occurs for the completely filled guide lies in

the fact that the fields show a preference for the isotropic

over the anisotropic region. We note that when the guide

is about two thirds filled with ferrite (~:= 0.36) the

effect introduced by the region of circular polariza.tion

near the guide is exactly counterbalanced by the elfect

felt due to the ferrite approaching the region of circular

polarization near the guide axis.

The final calculations presented here were made to

observe the changes in the differential phase shift for a

thin tube of ferrite into the guide for various values of

the tube mean radius. The computations were made for

a ferrite tube of thickness one tenth the gu~ide radius,

the parameters x and K again being O and 0.2, res pec-

tively, while the remaining guide parameters were se-

lected such that x“(O) =6. The calculations of the dif-

ferential phase shift variation with mean tube radius

are shown in Fig. 10. This graph clearly demonstrates

that the differential phase shift increases until the ferrite

tube contains a region of circular polarization then de-

creases, passes through zero, and decreases tc) a negative

maximum when the tube encloses the region circularly

polarized in the opposite sense. The fact that the maxi-

mum differential phase shift is the greater for the region

of polarization nearer the guide axis confirms that the

magnetic intensity is the greater there.

Even though the results for the thin tube may be

arrived at through perturbation theory, the exact solu-

tion allows the extension of the calculaticm to t hick

tubes and to the investigation of the effect of higher

order modes which may yield greatly increased dif-

ferential phase shift.
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Fig. 8. The field components for the circular cylindrical guide with
the ferrite tube in contact with the guide wall for various fre-
quency values above cutoff, where a) E+, b) HP, c) Ha.

CONCLUSIONS

A theoretical treatment and some numerical data

have been presented for a digital ferrite phase shifter

using circumferentially magnetized ferrite structures

within a circularly cylindrical waveguide operating in

the TEo1 mode. In particular, results of calculations

were presented for the differential phase shift introduced

by a thin ferrite tube of thickness one tenth the guide

radius. The variation of differential phase shift with
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4
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Fig. 9. Differential phase shift as a function of the filling factor
~ n ~/b for the guide partiallyfilledwithferrite. (Zero magnetiz-

ing field. )
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Fig. 10. Differential phase shift as a function of the mean tube
radius for the circular cylindrical guide containing a thin ferrite
tube coaxially. (Zero magnetizing field. )

changes in the mean ferrite tube diameter was given.

Secondly, the variation in differential phase shift for a

ferrite tube in contact with the guide wall was calcu-

lated as a function of the inner radius of the ferrite tube.

These calculations were made presuming zero dc mag-

netizing field but with the ferrite magnetically saturated

and showed that the maximum differential phase shift

was approximate y O.3/b rad/m, where b is the guide

radius. Thus for a guide of radius 1 cm about 10 cm

length of ferrite tube in contact with the guide wall and

of interior radius 0.6 cm should give r rad of phase

shift. Subdivision of the ferrite tube into 36 individual

toroids would allow the switching of the phase in incre-

ments of 5°. The length of each toroid would thus be

2.8 mm. These are estimates since the results are based

on differential phase shifts computed for the infinitely

long structures. Further, increasing the dc magnetizing

field will increase the differential phase shifts substan-

tially above the estimates given here.

It was observed that the effectiveness of the ferrite

was somewhat decreased by the tendency of the field

to be excluded from the ferrite region.

This study has thus shown the advantages of using

these structures as differential phase shifters. An exact

method for computing the differential phase shifts has

been presented and such computations should serve as

a guide in obtaining design data for devices of this type.


