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Theoretical Considerations on the Use of Circularly

Symmetric TE Modes for Digital Ferrite Phase Shifters

D. M. BOLLE, MmeMBER, 1EEE, AND G. S. HELLER

Abstract—The effectiveness of using magnetized ferrite toroids in
circularly cylindrical guides operating in the TE; mode as elements
of a digital phase shifter is investigated. The phase of such a device
is conirolled by reversing the magnetization of individual ferrite
toroids. An analysis of the circularly cylindrical guide containing, co-
axially, a ferrite tube is presented for circularly symmetric modes.
Some results of computations to determine the optimum tube thick-
ness, mean radius, and effect of frequency and changes in the funda-
mental constants of the material are included.

INTRODUCTION

O CONSERVE power and increase the accuracy
Tto which a prescribed phase shift may be set,

digital rather than the usual continuously variable
type phase shifters have been suggested for use in
phased microwave antenna arrays. Various schemes
have been suggested including the use of magnetically
saturated toroids in rectangular waveguides in which
the phase can be shifted digitally by the reversal of the
magnetization in the toroid through the application of
a current pulse. Many of these arrangements suffer
from the disadvantage that not all of the ferrite is effec-
tive in producing differential phase shift since only a
portion is in the region of circular polarization. Ferrite
toroids in round waveguides utilizing the circular TE
mode seem to be the natural microwave structure for
such nonreciprocal phase shifters since all of the ferrite
may then be effective.!

A theoretical investigation is presented here of the
mode structure and the differential phase shift per unit
length for the circular cylindrical guide containing a
coaxial ferrite tube. While it is recognized that in prac-
tice the ferrite toroid will be of finite length, and the
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1963, pp 38.

ferrite will not necessarily be completely magnetically
saturated, it is expected that this study will yield useful
design data such as the differential phase shift, optimum
toroid placement and dimensions.

Various ways of switching the ferrite cores are avail-
able since E, is the only component of the electric field
present in the guide. Assuming no undesirable mode
conversion present upon introducing the ferrite toroids
into the guide it is possible to switch the cores by, for
example, either running a thin central conductor down
the guide axis and linking to this wires entering the
guide radially and insulated from the guide wall, or, by
introducing loops in planes normal to the angular co-
ordinate ¢. Suitable current pulses applied to these
loops will then allow the saturation field to be reversed
in the ferrite cores.

THEORY

We will first consider wave propagation in a circular
cylindrical guide completely filled with ferrite mag-
netized in the circumferential or ¢-direction. The com-
pletely filled guide is treated only to study the charac-
ter of the eigenfunctions and their eigenvalues and it
is not expected (due to the difficulty of synthesizing a
uniform circumferential magnetizing field) that such an
arrangement will have practical utility. The analysis
will then be extended to more complex structures such
as tubes or rods of ferrite placed coaxially within ciccu-
lar cylindrical guides.

A ferrite magnetized in the direction of the ¢-coordi-
nate may be characterized by the permeability tensor

14x 0 j
= O 1 0 €]
—jk 0 14+ x
where
yMvH woyM
x= T o
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and v is the gyromagnetic ratio, M/ the magnetization,
and H the magnetizing field. We will restrict our atten-
tion to those TE modes that exhibit rotational sym-
metry. Assuming time and axial variations of the form
et and e, respectively, we find that the only non-
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vanishing component of the electric field E; must satisfy
the differential equation
dqus 1 dE¢ a’ 1
+——+ Pt ———)Es=0 (3)
7

dr? r dr 7

where 7 is the radial coordinate and

o = B/(1+x%)
P2 = oluged’ — B2

A = [(14+x = el/(1+%). €y
The components of the magnetic field are given by
B+ x) k 1 9
Hy=—— " Es+— — — (E,)
’)/02 ’Yoz ¥ or
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where
vor = wluo[(1 + %)% — k?] = wuoA. (6)

We seek solutions to (3) subject to the boundary condi-
tion
E¢ = 0, ¥y = b (7)

where b is the inner radius of the guide.

Equation (3) is recognized as Tricomi’s form of the
Confluent Hypergeometric equation.? We may thus con-
struct solutions using Humbert’s or Whittaker’s nota-
tion or other forms of the Confluent Hypergeometric
functions.? Since the tabulation of these functions and
their eigenvalues is not complete it was decided to con-
struct solutions that relate directly to Bessel and Neu-
mann functions. This was prompted by the fact that as
o goes to zero (3) reduces to Bessel’s equation. Further,
as o is proportional to the product 8k we have that the
eigenvalues must reduce to those of the Bessel functions,
both at cutoff =0, and as x goes to 0, i.e., as the ferrite
material is allowed to become isotropic. Thus construct-
ing solutions Bi(a; kr) and Hi(a; kr) not only facilitated
the computational work but also aided in physical
interpretation.

Thus

By(0; %) = Jui(x),  Hi(0; %) = Ni(x) (&)

where x=kr.
These functions are given by

o0
By(as %) = 22 apt!
p=0

— (aapr1+ @) /(P + (0 +4)
1/2, a= —a/3 ®

Qpyz =

ay =

 Bateman Compendia, vol 1, New York: McGraw-Hill, 1953,
p. 251.

3 Morse, P. M. and Feshbach, H., Methods of Theoretical Physics,
vol 1, New York: McGraw-Hill, 1953, ch 5, pp 604-619.
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Fig. 1.

Bi{e; x) as a function of x and labelled with the parameter a.

INTERVALS ON ABSCISSA = [

8,(a,x}

Fig. 2. The derivative of By(«; x) as a function of

x and labelled with the parameter .

and

Hia; %) = ;2;{[7 +1n(5) | mites ) - ETla?

o o
—_ T + g dn+2x”+1}
duyr = — (adpir + do)/n(n + 2) — [1/n+ 1/(n + 2)]a,
do=—1/1+a?, di=—a/(1+a?,
de=(y—1In2—1/2)/2 (10)
where

a =o' /k.

Figures 1 through 4 show the functions Bi(a; %),
Hi(a; x) and their derivatives as a function of x with «
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Fig. 3. Hy{e;x)asa function of x and labelled with the parameter a.

Fig. 4. The derivative of Hi(a; x) as a {unction of »
and labelled with the parameter «.

as a parameter (—2<a<10; 0<x<10). Thesolution to
(3) may thus be written in the form

E¢, = ABl(D(; CX') + BHl(Oé; ”C) (11)

where 4 and B are constants. However, E;, must be
bounded at the origin thus B=0. The boundary condi-
tions (7) then gives

B1(0t; 5\50) =0 (12)

where xp=Fkb. The eigenvalues of (12) will be denoted
by pi,n(a) where the $1,,(0) correspond to the eigen-
values of Ji(x)=0. Figure 5 shows the functional de-
pendence of the first three eigenvalues pi1(o), p12(er)
and pi13(a) on a.

To calculate the propagation constant at given w and
given ferrite parameters we use relations (4), eliminate
B to obtain

wugeb?A’ _ x02(0)
14 [l + %)/« 14 21 + x)¥/x

(13)

xo*(a) =
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Fig. 5. The eigenvalues of Bi(a; x) as a function of «.

Superposition of the curves generated by (13) on the
family of curves i .(e), give, for any one value of e,
the two sets of values (o, x) that simultaneously satisfy
the required conditions (12) and (13). Then, using (4),
we may calculate the propagation constants, i.e.,

(14)

It is clear that the curves generated by (13) are sym-
metric about =0 and the curves p1 »(«) are not. Thus
the propagation constants 4 and S_ calculated from
their points of intersection differ. We observe that as
w is decreased the guide is “cutoff” in one direction be-
fore the other and the ordinate of (13) approaches
p1.m(0). Also, since the slope of pi,m(e) at @=0 is nega-
tive and the slope of (13) is zero at o =0—we see that
just prior to “cutoff” for both directions of propagation
there are two intersections of (13) with p1.(a) for «
positive and, therefore, two distinct modes for the same
direction of propagation become possible. These then
coalesce as w is further reduced and complete cutoff is
finally reached. The directions of propagation are not
identified as forward and reverse since, for a posilive,
Bb may be positive or negative depending on the sign of

(1+x)/x, ie.,
w 2 [(vH)? + yMyH]'?— (1 + x)/c S 0. (15)

We can now treat the case of a circumferentially
magnetized ferrite tube mounted coaxially within a
circular cylindrical guide. (We again restrict oursclves
to considering the rotationally symmetric TEE modes.)
Let the inner and outer radii of the ferrite tube be ¢ and
b, respectively, and let d be the guide radius. A cross-
section of the guide will then show three regions, namely,
an inner region filled by some isotropic dielectric, the
middle region containing the ferrite, and an outer
region again containing an isotropic dielectric, these
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regions and related quantities will be identified using
the Roman numerals I, II and III for the inner, middle,
and outer regions.

We can now write the following expressions for the
electric field components

E¢I = E1J1(k01’)€_‘i(ﬁlz)
Eg% = [Bi(a; kr) + CHy(a; kr)]e—7®u»

EJ = Erg[Ji(ke) + DN1(ker)|e=i6mo (16)

where
(a7

and where E;, Ey, Ein, C, and D are constants. The di-
electric constant of the regions not containing ferrite
was taken to be that of the ferrite. This may, in fact,
be desirable in practice besides simplifying the calcula-
tions somewhat.

Application of the boundary conditions and eliminat-
ing the constants yields the transcendental equation

ko? = wluge — G2

Bila; m1x) Fila; m1x) — Fala; 7ex)
Hqa; %) .F3<O{; 71%) — Fola; mak)
Bila; 70x) Fila; 1ox) — Fola; mox)
- Hia; m9x) .Fg(a; 7ox) — Fylo; 72x)

(18)

where
Filo; 72) = [1 — arx + 2By (a; %)/ Bi(a; )| /A7
Fole; 1) = 79T o(1y)/T1(7)
Fy(a; ) = [1 — arx + reHy (a; 7))/ Hila; 7x) /A
Fyla; ) = ryZo(ry)/Z:(1y)
and
Zo(ry) = Jo(ry) N1(y) — J1(y)Vo(ry)
Za(ry) = Ju(ry)N1(y) — J1(») N1(ry)

where 7 may take on the subscripts 1 and 2, and
1 = a/d, 9 = b/d
and
x = kd, y = kod

also
d
Bi(a; y) = — Bi(a; »), etc.
dy

We have also

¥ =2+ [a(1 + 001 — A} A’ (19)

Solutions of the transcendental equation will yield the
eigenvalues as a function of a—the intersection of these
curves with (19) will then, as before, allow the computa-
tion of the propagation constants and the differential
phase shift of this structure.

As a sample, and because these results were used in
calculations to be presented, the form that the field
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components take for the ferrite tube in contact with
the guide wall is given.
For 0 <»<a we have

Eyt = J1(yr/b)/T1(7y)
— JoucbHo' = yJ(yr/b)/T1(7y)

— JonebH,' = jox(1 4 x)J1(yr/6)/xJ1(ry)  (20)
and for a <r<b=d
E,J U = F(a;ar/b)
Bi(as xr/b)Hi(e; €) — Bia; x) Hi(e; xr/b)
Bi(a; mx) Ha(a; x) — Bia; x)Hi(e; 7x)
— joubH M
= [[b/r — ax|F(a; x7/b) + xF'(a; xr/b)} /&
— wpobH !
= {[ax(1 + %)/x — b/ (1 + x)7]F (a; 27/b)
+ /(L4 x) - F'a; ar/b)} /&, (21)

where the primes indicate differentiation w.r.t. xr/b.

RESULTS AND DISCUSSION

As was to be expected for the case of the completely
filled guide the curves (Fig. 5) displaying the behavior
of the eigenvalues as a function of « are not symmetric
about the ordinate since the magnetic intensities in the
regions where circular polarization occurs differ, being
somewhat stronger nearer the center of the guide. There-
fore, even for the completely filled guide a differential
phase shift is obtained. This is in contrast to the case
of the completely filled rectangular guide.

Figures 6 and 7 show the results of calculations per-
formed on the transcendental equation (18). That is,
they show the behavior of the eigenvalues as a function
of « for the two limit cases, the ferrite tube collapsed
into a central rod and the tube in contact with the guide
wall. These calculations were made taking the values
x =0 and k=.2, i.e., the magnetizing field H was taken
to be zero and ¥A{/w was given a representative value
of one fifth. The lowest order eigenvalue was calculated
for various values of 7 where r=ga/d—thus 7 indicates
the fraction of the guide cross-section filled with ferrite.
In the limit as 7 approaches zero or unity these curves
approach those for the guide filled completely by an
isotropic dielectric or the ferrite. The dielectric constant
for both the ferrite and the dielectric regions was taken
to be nine.

One would expect that in the partially filled guide the
differential phase shift would increase over that of the
completely filled guide as, in this case, only one region
where circular polarization occurs is contained within
the ferrite region. Further, one expects that as 7 in-
creases the differentially phase shift increases until =
is such that about half the guide section is filled where-
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Fig. 6. The eigenvalues as a function of a for the circular cylindrical
guide containing a circumferentially magnetized ferrite rod.
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Fig. 7. The eigenvalues as a function of « for the circular cylindrical
guide containing a circumfrentially magnetized ferrite tube in
contact with the guide wall.

after it would decrease until it matches the value for
the completely filled guide. Thus, one expects the slope
of the eigenvalue curves to be the largest (negatively)
when 7 is about one half. This is indeed true for « small
but as « increases negatively this no longer holds and
the curves take a downturn such that in this range the
differential phase shift is less than it would be for the
completely filled guide. When we have a ferrite tube in
contact with the guide wall this effect is even more pro-
nounced (Fig. 7) and we see that for even small « the
slopes of the eigenvalue curves are equal to or less than
that for the completely filled guide. Of course, for the
latter case where the guide contains little ferrite (z—1)
we expect the eigenvalues curves to become almost sym-
metric about the ordinate since the differential phase
shift will become vanishingly small.

An explanation that would account for the downturn
in the eigenvalue curve for « large and negative is that
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the field must be expelled from the ferrite in this region.
To determine if in fact this occurs the components of
the electric and magnetic field were computed for this
case using (20) and (21) for 7=0.2 and x,(0) =6, 20, 30
and 40 in (13). These values of x¢(0) inserted into (13)
assured that the intersection points of (13) with the
eigenvalue curve for 7 =0.2 fell at suitable points, that
is, before, on, and after the downturn. The results of
these calculations, presented in Fig. 8, clearly show that
the fields are expelled as « increases negatively—until
at x0(0) equal to about 40 the greater part of the energy
is transported for this direction of propagation in the
isotropic region. Thus, for this case the magnetic fields
are relatively weak throughout the region of circular
polarization lying within the ferrite and consequently
the anisotropic character of the medium has a smaller
effect on the propagation constant for this direction of
propagation.

The region of « large and negative holds, in fact, but
modest interest since operation in this region would
vield decreasing values of differential phase shift. Thus
the character of the eigenvalue curves for o above the
downturn is of primary interest.

Figure 9 presents a typical curve of the differential
phase shift as a function of 7. Again, the explanation
of the unexpected result that the maximum differential
phase shift occurs for the completely filled guide lies in
the fact that the fields show a preference for the isotropic
over the anisotropic region. We note that when the guide
is about two thirds filled with ferrite (r=0.36) the
effect introduced by the region of circular polarization
near the guide is exactly counterbalanced by the effect
felt due to the ferrite approaching the region of circular
polarization near the guide axis.

The final calculations presented here were made to
observe the changes in the differential phase shift for a
thin tube of ferrite into the guide for various values of
the tube mean radius. The computations were made for
a ferrite tube of thickness one tenth the guide radius,
the parameters x and « again being 0 and 0.2, respec-
tively, while the remaining guide parameters were se-
lected such that x4(0) =6. The calculations of the dif-
ferential phase shift variation with mean tube radius
are shown in Fig. 10. This graph clearly demonstrates
that the differential phase shift increases until the ferrite
tube contains a region of circular polarization thern de-
creases, passes through zero, and decreases to a negative
maximum when the tube encloses the region circularly
polarized in the opposite sense. The fact that the maxi-
mum differential phase shift is the greater for the region
of polarization nearer the guide axis confirms that the
magnetic intensity is the greater there.

Even though the results for the thin tube may be
arrived at through perturbation theory, the exact solu-
tion allows the extension of the calculation to thick
tubes and to the investigation of the effect of higher
order modes which may vyield greatly increased dif-
ferential phase shift.
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Fig. 8. The field components for the circular cylindrical guide with

the ferrite tube in contact with the guide wall for various fre-
quency values above cutoff, where a) E4, b) H,, ¢) H,.

CONCLUSIONS

A theoretical treatment and some numerical data
have been presented for a digital ferrite phase shifter
using circumferentially magnetized ferrite structures
within a circularly cylindrical waveguide operating in
the TEy mode. In particular, results of calculations
were presented for the differential phase shift introduced
by a thin ferrite tube of thickness one tenth the guide
radius. The variation of differential phase shift with
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Fig. 9. Differential phase shift as a function of the filling factor
r=a/b for the guide partially filled with ferrite. (Zero magnetiz-
ing field.)
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Fig. 10. Differential phase shift as a function of the mean tube
radius for the circular cylindrical guide containing a thin ferrite
tube coaxially. (Zero magnetizing field.)

changes in the mean ferrite tube diameter was given.
Secondly, the variation in differential phase shift for a
ferrite tube in contact with the guide wall was calcu-
lated as a function of the inner radius of the ferrite tube.
These calculations were made presuming zero dc mag-
netizing field but with the ferrite magnetically saturated
and showed that the maximum differential phase shift
was approximately 0.3/6 rad/m, where b is the guide
radius. Thus for a guide of radius 1 c¢cm about 10 cm
length of ferrite tube in contact with the guide wall and
of interior radius 0.6 cm should give w rad of phase
shift. Subdivision of the ferrite tube into 36 individual
toroids would allow the switching of the phase in incre-
ments of 5°. The length of each toroid would thus be
2.8 mm. These are estimates since the results are based
on differential phase shifts computed for the infinitely
long structures. Further, increasing the dc magnetizing
field will increase the differential phase shifts substan-
tially above the estimates given here.

It was observed that the effectiveness of the ferrite
was somewhat decreased by the tendency of the field
to be excluded from the ferrite region.

This study has thus shown the advantages of using
these structures as differential phase shifters. An exact
method for computing the differential phase shifts has
been presented and such computations should serve as
a guide in obtaining design data for devices of this type.



